Lecture 10
 14.1 Functions of several variables

Jeremiah Southwick

February 13, 2019

Things to note

Exams will be passed back at end of class.

Office hours canceled today and tomorrow.

Quiz on Friday will cover today's material.
HW04 will be posted by 11:30.

Chapter 14: Partial derivatives

Chapter 14 is all about re-doing Calculus 1 with multivariable functions.

Chapter 14: Partial derivatives

Chapter 14 is all about re-doing Calculus 1 with multivariable functions.

Chapter 12
Vectors
Products
Planes
Lines

Chapter 13
Vector Functions

Chapter 14: Partial derivatives

Chapter 14 is all about re-doing Calculus 1 with multivariable functions.

Chapter 12
Vectors
Products
Planes
Lines

Chapter 13
Vector Functions

Chapter 14
Limits
(Partial) Derivatives
The Gradient
(Directional) Derivatives
Tangent planes
Min/Max

14.1 Functions of several variables

A function of several variables is a function that depends on more than just one variable.

14.1 Functions of several variables

A function of several variables is a function that depends on more than just one variable. They look like

$$
z=f(x, y) \quad \text { or } \quad w=f(x, y, z)
$$

14.1 Functions of several variables

A function of several variables is a function that depends on more than just one variable. They look like

$$
z=f(x, y) \quad \text { or } \quad w=f(x, y, z)
$$

When z is defined as a function of x and y, we say that x and y are independent variables and z is the dependent variable.

14.1 Functions of several variables

A function of several variables is a function that depends on more than just one variable. They look like

$$
z=f(x, y) \quad \text { or } \quad w=f(x, y, z)
$$

When z is defined as a function of x and y, we say that x and y are independent variables and z is the dependent variable.

Example
$f(x, y)=x^{2}+y^{2}, z=\sin (x+y), g(x, y)=e^{y}-5 x$

Domains

In the single variable case (Calculus 1 and 2), the domain of a function was a portion of the real line.

Domains

In the single variable case (Calculus 1 and 2), the domain of a function was a portion of the real line.

Example

Find the domain of $f(x)=\frac{1}{x-1}$.

Domains

In the single variable case (Calculus 1 and 2), the domain of a function was a portion of the real line.

Example

Find the domain of $f(x)=\frac{1}{x-1}$.
We have $x-1 \neq 0$, so $x \neq 1$. Thus the domain is $(-\infty, 1) \cup(1, \infty)$, or $\{x \in \mathbb{R} \mid x \neq 1\}$.

Domains

This is contrasted with the multivariable case, where the domain of $f(x, y)$ is a portion of the $x y$-plane.

Domains

This is contrasted with the multivariable case, where the domain of $f(x, y)$ is a portion of the $x y$-plane.
Example
Find the domain of $f(x, y)=\sqrt{y-x^{2}}$.

Domains

This is contrasted with the multivariable case, where the domain of $f(x, y)$ is a portion of the $x y$-plane.
Example
Find the domain of $f(x, y)=\sqrt{y-x^{2}}$.
We're asking the question, "What points (x, y) can I plug into this function?"

Domains

This is contrasted with the multivariable case, where the domain of $f(x, y)$ is a portion of the $x y$-plane.
Example
Find the domain of $f(x, y)=\sqrt{y-x^{2}}$.
We're asking the question, "What points (x, y) can I plug into this function?"
The defining restriction for $f(x, y)$ is

$$
y-x^{2} \geq 0
$$

This is visualized as

Domains

The previous example had a square root in it. Another common operation with a restricted domain is the inversion function $1 / x$, i.e., a function with something in its denominator.

Domains

The previous example had a square root in it. Another common operation with a restricted domain is the inversion function $1 / x$, i.e., a function with something in its denominator.

Example

Find the domain of the function $z=\frac{1}{x y}$.

Domains

The previous example had a square root in it. Another common operation with a restricted domain is the inversion function $1 / x$, i.e., a function with something in its denominator.

Example

Find the domain of the function $z=\frac{1}{x y}$.
The defining inequality is

$$
x y \neq 0 \Rightarrow x \neq 0 \text { and } y \neq 0
$$

So all the points not on the x - or y-axes.

Domains

Question
What other functions have restricted domains?

Domains

Question
What other functions have restricted domains?
Answer
Logarithms, even roots, trig functions like $\tan (-)$ and $\sec (-)$.

Domains

Question

What other functions have restricted domains?
Answer
Logarithms, even roots, trig functions like $\tan (-)$ and $\sec (-)$.
If none of these are present, the domain is all of \mathbb{R}^{2}.

Example

Find the domain of $z=\sin (x y)-e^{x-y}$.

Domains

Question

What other functions have restricted domains?
Answer
Logarithms, even roots, trig functions like $\tan (-)$ and $\sec (-)$.
If none of these are present, the domain is all of \mathbb{R}^{2}.

Example

Find the domain of $z=\sin (x y)-e^{x-y}$.
The domain is $D=\mathbb{R}^{2}$.

Ranges

Ranges are more familiar for multivariable functions. We ask the question, "What z-values (i.e., heights) can be obtained from this function?"

Ranges

Ranges are more familiar for multivariable functions. We ask the question, "What z-values (i.e., heights) can be obtained from this function?"
This is still a subset of the number line, so we can use interval notation.

Ranges

Ranges are more familiar for multivariable functions. We ask the question, "What z-values (i.e., heights) can be obtained from this function?"
This is still a subset of the number line, so we can use interval notation.

Example
Find the range of $f(x, y)=\sqrt{y-x^{2}}$ and $z=\frac{1}{x y}$.

Ranges

Ranges are more familiar for multivariable functions. We ask the question, "What z-values (i.e., heights) can be obtained from this function?"
This is still a subset of the number line, so we can use interval notation.

Example
Find the range of $f(x, y)=\sqrt{y-x^{2}}$ and $z=\frac{1}{x y}$.
The range of $f(x, y)$ is $\{z \in \mathbb{R} \mid z \geq 0\}$ or $[0, \infty)$.

Ranges

Ranges are more familiar for multivariable functions. We ask the question, "What z-values (i.e., heights) can be obtained from this function?"
This is still a subset of the number line, so we can use interval notation.

Example
Find the range of $f(x, y)=\sqrt{y-x^{2}}$ and $z=\frac{1}{x y}$.
The range of $f(x, y)$ is $\{z \in \mathbb{R} \mid z \geq 0\}$ or $[0, \infty)$.
The range of z is $(-\infty, 0) \cup(0, \infty)$ or $\{z \in \mathbb{R} \mid z \neq 0\}$.

Level curves

To help ourselves graph multivariable functions, we will often consider the level curves of a function.

Level curves

To help ourselves graph multivariable functions, we will often consider the level curves of a function.

Definition
Let c be a real number. The set of points (x, y) where $f(x, y)=c$ is called a level curve of f.

Level curves

To help ourselves graph multivariable functions, we will often consider the level curves of a function.

Definition
Let c be a real number. The set of points (x, y) where $f(x, y)=c$ is called a level curve of f.

Example
Let $f(x, y)=100-x^{2}-y^{2}$. Find the level curves for
$z=100, z=75, z=51$, and $z=0$.

Level curve example

Example

Let $f(x, y)=100-x^{2}-y^{2}$. Find the level curves for $z=100, z=75, z=51$, and $z=0$.

Level curve example

Example

Let $f(x, y)=100-x^{2}-y^{2}$. Find the level curves for
$z=100, z=75, z=51$, andz $=0$.
For $z=100$, we get $100=100-x^{2}-y^{2}$, or $x^{2}+y^{2}=0$. This defines the point $(0,0,100)$.

Level curve example

Example

Let $f(x, y)=100-x^{2}-y^{2}$. Find the level curves for
$z=100, z=75, z=51$, and $z=0$.
For $z=100$, we get $100=100-x^{2}-y^{2}$, or $x^{2}+y^{2}=0$. This defines the point $(0,0,100)$.
For $z=75$, we get $75=100-x^{2}-y^{2}$, or $25=x^{2}+y^{2}$. This defines the circle of radius 5 centered at $(0,0,75)$, lying in the plane $z=75$.

Level curve example

Example

Let $f(x, y)=100-x^{2}-y^{2}$. Find the level curves for
$z=100, z=75, z=51$, and $z=0$.
For $z=100$, we get $100=100-x^{2}-y^{2}$, or $x^{2}+y^{2}=0$. This defines the point $(0,0,100)$.
For $z=75$, we get $75=100-x^{2}-y^{2}$, or $25=x^{2}+y^{2}$. This defines the circle of radius 5 centered at $(0,0,75)$, lying in the plane $z=75$.
For $z=51$, we get $51=100-x^{2}-y^{2}$, or $49=x^{2}+y^{2}$. This defines the circle of radius 7 centered at $(0,0,51)$, lying in the plane $z=51$.

Level curve example

Example

Let $f(x, y)=100-x^{2}-y^{2}$. Find the level curves for
$z=100, z=75, z=51$, and $z=0$.
For $z=100$, we get $100=100-x^{2}-y^{2}$, or $x^{2}+y^{2}=0$. This defines the point $(0,0,100)$.
For $z=75$, we get $75=100-x^{2}-y^{2}$, or $25=x^{2}+y^{2}$. This defines the circle of radius 5 centered at $(0,0,75)$, lying in the plane $z=75$.
For $z=51$, we get $51=100-x^{2}-y^{2}$, or $49=x^{2}+y^{2}$. This defines the circle of radius 7 centered at $(0,0,51)$, lying in the plane $z=51$.
For $z=0$, we get $0=100-x^{2}-y^{2}$, or $100=x^{2}+y^{2}$. This defines the circle of radius 10 centered at $(0,0,0)$, lying in the plane $z=0$.

Level curve example

We can visualize these in only the $x y$-plane, or in space at the appropriate heights.

Level curve example

We can visualize these in only the $x y$-plane, or in space at the appropriate heights.

Full picture

The level curves allow us to visualize the whole surface.

Full picture

The level curves allow us to visualize the whole surface.

